
 Page 1

NURail project ID: NURail2016-UIUC-R17

Optimal Planning of Rail Grinding Activities in Large-scale Networks

By

Chao Lei, Ph.D.

Postdoctoral Research Associate

Department of Civil and Environmental Engineering

University of Illinois at Urbana-Champaign

E-mail: chaolei@illinois.edu

Yanfeng Ouyang, Ph.D.

 Professor

Department of Civil and Environmental Engineering

University of Illinois at Urbana Champaign

Email: yfouyang@illinois.edu

and

Siyang Xie, Ph.D.

Research Assistant

Department of Civil and Environmental Engineering

University of Illinois at Urbana-Champaign

E-mail: sxie13@illinois.edu

17-04-2018

Grant Number: DTRT13-G-UTC52

mailto:chaolei@illinois.edu
mailto:yfouyang@illinois.edu
mailto:sxie13@illinois.edu

 Page 2

DISCLAIMER

Funding for this research was provided by the NURail Center, University of Illinois at Urbana -

Champaign under Grant No. DTRT13-G-UTC52 of the U.S. Department of Transportation, Office of

the Assistant Secretary for Research & Technology (OST-R), University Transportation Centers

Program. The contents of this report reflect the views of the authors, who are responsible for the facts

and the accuracy of the information presented herein. This document is disseminated under the

sponsorship of the U.S. Department of Transportation’s University Transportation Centers Program, in

the interest of information exchange. The U.S. Government assumes no liability for the contents or use

thereof.

 Page 3

TECHNICAL SUMMARY

Title

Optimal Planning of Rail Grinding Activities in Large-scale Networks

Introduction

In railroads, safety is one of the most important topics and has attracted tremendous attention recently

due to some reported accidents. Among all the causes of train accidents in the United States, track

defects are one of the leading reasons. Basically, the natural processes of wear and fatigue of rail steel

can proceed at a rapid pace that results in track defects and short service lives. Therefore, maintenance

of rails (such as grinding, ballast cleaning, ditching) is very important for regular railroad operations.

One unique feature of these rail maintenance activities is that vehicles may experience variable

productivity due to both endogenous and exogenous factors, and thus the actual working duration of a

maintenance job is unknown to the operator beforehand and needs to be determined. For example, if a

track has not been grinded in a timely fashion, its abrasive condition will further accelerate the wear

and tear such that more time has to be spent on that track next time to get the job done. The variability

of productivity in this case is caused endogenously by the generated grinding schedule. On the other

hand, vehicle productivity may also be affected by exogenous reasons such as traffic interference. Take

ballast cleaning as an example, the associated vehicles can work for a longer time during a day if the

track to be maintained is under traffic curfew.

Practical instances of the rail maintenance routing and scheduling problem (RMRSP) usually involve

hundreds or thousands of jobs and an enormous number of complex constraints. Meanwhile, all the

routing decisions must be made in a large-scale railroad network. In current rail industry practice,

routing and scheduling decisions are mostly manually determined based on the experiences and

knowledge of experts. However, such decision-making process is likely to take a long time while the

solution quality may still be poor. In light of these complexities, this research focuses on building a

comprehensive mathematical model and developing efficient solution approaches for RMRSP under

variable productivities.

Approach and Methodology

In this research, we build a mixed-integer model formulation for RMRSP, which involves many

complex side constraints for various business requirements from the industry practice. Adding these

 Page 4

side constraints introduces significant difficulties in finding a good feasible solution for large-scale

industrial applications.

RMRSP is a VRPTW involving routing and scheduling decisions and many complex side constraints.

Therefore, it is extremely difficult, if not impossible, to find an optimal solution for large-scale

industrial instances via current exact solvers. To effectively handle the complexity and challenges

associated with this type of problems, we propose a customized algorithm framework which includes a

rolling horizon approach and a stepwise heuristic procedure with embedded mixed-integer

programming (MIP) optimization, insertion heuristic, and local search heuristic.

Findings

We test the performance of the proposed model and solution algorithm for two real-world RMRSP

instances in a Class I railroad network in North America (with more than 20,000 miles of track length):

one is scheduling rail grinders for grinding rail segments, and the other one is scheduling ballast

cleaners for a given set of jobs requests. Both instances are used by the Class I railroad company in its

real-world operations. These two empirical case studies show that the schedule produced by the

proposed approach leads to a higher utilization of the maintenance vehicles compared with current

manual solutions, e.g., the improvement in track miles being maintained is 21% for grinders and 77%

for ballast cleaners. This saving is very attractive to the railroad company since most of the

maintenance vehicles involve large costs.

Conclusions

This research develops a VRPTW-based MIP model to formulate the core component of RMRSP

under variable productivities, with many complex side constraints being used to capture various

business requirements. A customized stepwise algorithm procedure involving an MIP optimization

model, an insertion heuristic, and a local search module, is designed and embedded in a rolling horizon

approach framework to effectively solve the problem. A series of numerical instances show that the

proposed approach is able to obtain good solutions effectively and efficiently. Two empirical case

studies with rail grinding and ballast cleaning applications are also conducted to demonstrate that the

proposed solution algorithm outperforms manual solution approach and provide insights and

instructions for industrial applications.

Recommendations

The proposed model and solution method have been adopted by a Class I railroad company to provide

insights and instructions for their railroad maintenance scheduling and routing applications. Note that

besides rail grinding and ballast cleaning, the proposed model and solution approach can be easily

extended to other applications in the railroad maintenance context, such as ditching, tie replacement

and tamping.

 Page 5

In the future, it would be interesting to study the problem in a dynamic setting, where the routes and

schedules can be modified according to the changing environments. This would become particularly

important if real-time data and more accurate predictions can be obtained by applying more advanced

sensing technologies to detecting the deterioration status of the tracks or ballasts. In addition, it would

be meaningful to investigate how the cyclic scheduling of rail maintenance machines can be achieved,

where the segments that need to be routinely maintained can be visited repeatedly based on certain

frequencies. Given the frequencies might be significantly different from each other, it is easy to

imagine that the problem scale would become much larger and more powerful solution approaches

such as metaheuristic algorithms need to be developed.

Publications

Xie, S., Lei, C. and Ouyang, Y. (2018) “A customized hybrid approach to infrastructure maintenance

scheduling in railroad networks under variable productivities.” Computer-aided Civil and

Infrastructure Engineering. In press.

Primary Contact

Principal Investigator

Yanfeng Ouyang

Professor

Department of Civil and Environmental Engineering

University of Illinois at Urbana Champaign

205 N Mathews Ave, Urbana, IL, 61801

Email: yfouyang@illinois.edu

Other Faculty and Students Involved

Chao Lei

Postdoctoral Research Associate

Department of Civil and Environmental

Engineering

University of Illinois at Urbana-Champaign

Email: chaolei@illinois.edu

Siyang Xie

Research Assistant

Department of Civil and Environmental

Engineering

University of Illinois at Urbana-Champaign

E-mail: sxie13@illinois.edu

NURail Center

217-244-4444

nurail@illinois.edu

http://www.nurailcenter.org/

mailto:yfouyang@illinois.edu
mailto:mohdsaatchaolei@illinois.edu
mailto:sxie13@illinois.edu
mailto:nurail@illinois.edu
http://www.nurailcenter.org/

TABLE OF CONTENTS

1 Introduction 8

2 Model Formulation 11
2.1 VRPTW-based Core Model . 11
2.2 Side Constraints . 13

2.2.1 Hard/Soft Time Windows Constraints 13
2.2.2 Preference Time Windows Constraints 14
2.2.3 Repulsive Time Windows Constraints 15
2.2.4 Mutual Exclusion Constraints . 15
2.2.5 Precedence Constraints . 16
2.2.6 Maintenance Constraints . 16

3 Solution Algorithm 17
3.1 Rolling Horizon . 17
3.2 Stepwise Heuristic Procedure . 18
3.3 Insertion Heuristic . 19
3.4 Local Search Heuristic . 21

4 Numerical Studies 22
4.1 Performance Tests . 22
4.2 Sensitivity Analysis . 23
4.3 Real-world Applications . 24

5 Conclusion 28

Page 6

LIST OF FIGURES

3.1 Rolling horizon algorithm framework and the embedded stepwise heuristic
procedure. 17

3.2 Illustration of the rolling horizon algorithm. 18
4.1 Frequency distribution. 26
4.2 Results of real-world grinder scheduling. 27
4.3 Results of real-world ballast cleaner scheduling. 27

LIST OF TABLES

4.1 Algorithm performance for the hypothetical numerical instances. 23
4.2 Comparison of results with and without the insertion and local search heuristic. 24
4.3 Results for different weights of cost components in the objectives. 24
4.4 Results for different choices of input and output horizon length. 25

Page 7

SECTION 1: INTRODUCTION

In railroads, safety is one of the most important topics and has attracted tremendous attention
recently due to some reported accidents (Castillo et al., 2016b,a; Wang et al., 2018). Among all
the causes of train accidents in the United States, track defects are one of the leading reasons.
According to the Federal Railroad Administration Office of Safety Analysis (2017), 27.77%
of train accidents happened from January to December 2017 were caused by track defects.
Basically, the natural processes of wear and fatigue of rail steel can proceed at a rapid pace
that results in track defects and short service lives. Therefore, maintenance of rails is very
important for regular railroad operations. The goal of rail maintenance is to achieve the longest
possible rail life without increasing the safety risks and costs associated with unanticipated rail
failures. In North America, railroad companies spend millions of dollars to perform periodic
maintenance jobs, so as to ensure safety and improve operational efficiency.

As an example, grinding of railroad segments has evolved as an effective maintenance technique
to control wear artificially and to maintain wheel/rail contact. Rail grinding is usually performed
by rail-bound production grinders, which remove metal from the rail surface using rotating
grinding wheels (stones). The volume of removed metal would be related to the number,
abrasive condition and arrangement of grinding stones on each rail, the pressure being enforced,
the forward speed of the machine, and the hardness of the rail surface being worked on. Proper
rail grinding controls the rail (and wheel) surface plastic deformation and the rolling contact
fatigue cracks on the surface, and it improves truck steering, as well as the dynamic stability of
rolling stock.

Another example of railroad maintenance is ballast cleaning. Track ballast, which is typically
made of crushed stones, forms the track-bed upon which railroad ties are laid. The purpose
of track ballast is not only to bear the load from trains and railroad ties, but also to facilitate
drainage of water and prevent vegetation that might interfere with the track structure. However,
the ballast may get worn over time, i.e., losing its angularity and generating fine pieces of
material, such as sand. Combined with water in the ballast, the rounded stones and fines may
stick together and make the ballast like a lump of concrete. Apparently, this would weaken
the effectiveness of track drainage as well as the flexibility of ballast in constraining tracks.
Therefore, ballast cleaning is conducted to remove the worn-out ballast, screens it and replaces
with the fresh one. The cleaning work is performed by rail-bound machines called ballast
cleaners. However, given the huge and largely fixed rental and operating costs for ballast
cleaners and their unique requirements (e.g., low working speed, weather dependency, etc.), it
is essential to come up with an effective routing and scheduling plan such that the utilization of
ballast cleaners can be maximized.

One unique feature of the rail maintenance activities considered in this research is that vehicles
may experience variable productivity due to both endogenous and exogenous factors, and thus
the actual working duration of a maintenance job is unknown to the operator beforehand and
needs to be determined. For example, if a track has not been grinded in a timely fashion, its
abrasive condition will further accelerate the wear and tear such that more time has to be spent

Page 8

on that track next time to get the job done. The variability of productivity in this case is caused
endogenously by the generated grinding schedule. On the other hand, vehicle productivity
may also be affected by exogenous reasons such as traffic interference. Take ballast cleaning
as an example, the associated vehicles can work for a longer time during a day if the track to
be maintained is under traffic curfew. In light of these complexities, this research focuses on
building a comprehensive mathematical model and developing efficient solution approaches for
the rail maintenance routing and scheduling problem (RMRSP) under variable productivities.

Rail infrastructure maintenance is so important that it has attracted a lot of attentions from both
the rail industry and the academic community. Strategic and tactical maintenance planning of
railway infrastructures (Su et al., 2017; Xie et al., 2016), rail inspection scheduling (Lannez et al.,
2015; Osman et al., 2017; Peng et al., 2013), as well as the coordination of train scheduling and
infrastructure maintenance (D’Ariano et al., 2017; Forsgren et al., 2013; Lidén and Joborn, 2017;
Luan et al., 2017; Vansteenwegen et al., 2016), have been widely studied in the literature. See
Lidén (2015) for a more detailed review of the rail infrastructure maintenance planning problems.
However, the study and analysis of the rail track maintenance scheduling problem under variable
productivities are still lacking. Peng et al. (2011) and Peng and Ouyang (2012) studied the
similar track maintenance scheduling problems in a railroad network, where side constraints
such as time window, mutual exclusion, and precedence constraints were considered. They
constructed time-space network based models and developed neighborhood search heuristic
algorithms to solve the discrete model. However, since the working durations, as well as travel
times, are continuous, the planning horizon of RMRSP cannot be discretized such that it is
impossible to formulate RMRSP into a time-space network model. The most related work to our
research is conducted by Peng et al. (2013), who studied a rail inspection scheduling problem
where each task needs to be routed and scheduled periodically within a continuous planning
horizon. However, we notice that the working durations of tasks in RMRSP might be unknown
and can be affected by the times that they are scheduled (e.g., a machine can work in a higher
efficiency during curfews), rather than being fixed in the rail inspection scheduling problem.
Therefore, different model and algorithms need to be specifically developed for RMRSP.

Since one of the primary purposes of RMRSP is to find the optimal route to move maintenance
vehicles over the rail network to perform maintenance jobs, it shares great similarities with the
well-known vehicle routing problem (VRP) (Toth and Vigo, 2014), where each maintenance
job can be considered as a vertex of the network. In addition, since RMRSP involves schedul-
ing decisions in the time dimension and the start time of a job is usually subject to certain
time restrictions, it resembles the so-called VRP with time windows (VRPTW). VRPTW is
nondeterministic polynomial (NP) hard since it can be easily reduced to a typical VRP. In
fact, it has been proved that even finding a feasible solution to VRPTW for a fixed number of
vehicles is already an NP-complete problem (Savelsbergh, 1985). Even though many exact
solution methods (e.g., branch-and-cut (Kohl et al., 1999; Bard et al., 2002; Kallehauge et al.,
2007), branch-and-price (Desrochers et al., 1992; Lysgaard, 2006)) have been proposed for
VRPTW, most of the literatures focus on designing heuristics (Bräysy and Gendreau, 2005a)
and meta-heuristics (Bräysy and Gendreau, 2005b) to find good feasible solutions quickly. A
thorough survey of mathematical models and solution methods to solve VRPTW can be found
in Desaulniers et al. (2014). It should be noted that RMRSP is even more complex than typical

Page 9

VRPTW, since various types of side constraints (e.g., mutual exclusion constraints, various time
windows constraints) must be considered in RMRSP in addition to the traditional routing and
time window constraints in VRPTW.

One may also notice that RMRSP shares some similarities with the periodic vehicle routing
problem (PVRP) (Christofides and Beasley, 1984; Gaudioso and Paletta, 1992; Chao et al.,
1995; Cordeau et al., 1997; Francis et al., 2008), where customers are visited periodically
over multiple time periods according to a certain set of schedules, and different routes are
constructed in different time periods. Francis et al. (2006) later studied PVRP with service
choices, which allow customers’ visit frequencies to be decision variables. The readers can refer
to Campbell and Wilson (2014) for a comprehensive review of PVRP. However, it should be
noted that there is a major difference between our RMRSP and PVRP, i.e., the planning horizon
for RMRSP is continuous and cannot be discretized. Since the work duration for a maintenance
job can be a few minutes or several weeks, it may be unrealistic to define the length for a single
period. Moreover, the vehicles in RMRSP follow a continuous trip throughout the planning
horizon, which means that a vehicle resumes service right from where it locates by the end of
the previous working day, rather than having to start and end at the depot as in PVRP.

Practical instances of RMRSP usually involve hundreds or thousands of jobs and an enormous
number of complex constraints. Meanwhile, all the routing decisions must be made in a large-
scale railroad network. In current rail industry practice, routing and scheduling decisions are
mostly manually determined based on the experiences and knowledge of experts (Peng et al.,
2013). However, such decision-making process is likely to take a long time while the solution
quality may still be poor. In this research, we build a mixed-integer model formulation for
RMRSP, which involves many complex side constraints for various business requirements
from the industry practice. Adding these side constraints introduces significant difficulties in
finding a good feasible solution for large-scale industrial applications. Hence, we propose a
customized algorithm framework which includes a rolling horizon approach and a stepwise
heuristic procedure with embedded mixed-integer programming (MIP) optimization, insertion
heuristic, and local search heuristic. A series of numerical instances show that the proposed
approach is able to obtain good solutions effectively and efficiently. Two empirical case studies
with rail grinding and ballast cleaning applications are also conducted to demonstrate that the
proposed solution algorithm outperforms manual solution approach and provide insights and
instructions for industrial applications. Note that besides rail grinding and ballast cleaning,
the proposed model and solution approach can be easily extended to other applications in the
railroad maintenance context, such as ditching, tie replacement and tamping.

The remainder of the report is organized as follows. Section 2 presents a VRPTW based core
model formulation for RMRSP with multiple sets of side constraints. Section 3 proposes our
customized heuristic algorithm. Section 4 demonstrates the proposed model and algorithms
with a series of numerical instances and two real-world case studies and draws managerial
insights. Section 5 summarizes the report and discusses possible future extensions.

Page 10

SECTION 2: MODEL FORMULATION

In this section, we present a mixed-integer optimization model for RMRSP. We first formulate
the core component of RMRSP as a variant of VRPTW and then introduce various types of side
constraints.

2.1. VRPTW-based Core Model

Consider a rail network with a set of segments, denoted by M , where each segment m ∈M is
expected to be maintained periodically (with frequency Fm) every Γm units of time.1 Specifically,
for each segment m ∈M , every time a vehicle finishes performing a maintenance activity on
it, another maintenance activity is expected to be scheduled for it after the desired headway
Γm. As such, each segment is likely to be maintained for Nm ≥ 1 times within the entire
planning horizon, and we denote the set of all expected maintenance activities of segment m
as Nm = {1,2, . . . ,Nm}. We call each maintenance activity for a segment as a job. Let I
denote the set of all maintenance jobs that need to be performed in the planning horizon, a job
i ∈ I is defined as (mi,ni), where mi ∈M denotes the segment corresponding to job i and
ni ∈Nmi indicates the maintenance activity of segment mi. We further define Im as the set
of jobs associated with segment m ∈M . Each maintenance job i ∈I is associated with the
track length Li and priority value Pi of its segment mi. We define decision variable zi ∈ {0,1} to
indicate whether job i is performed or not. Each job i can only be conducted by one vehicle.
Denote K as the set of maintenance vehicles, we further let zk

i ∈ {0,1} denote whether job i
is performed by vehicle k ∈K or not. If job i is not performed by any vehicle, a penalty of
WjobLi is incurred, where Wjob denote the penalty per mile.

Since a job i of RMRSP typically involves a railroad segment with non-negligible length Li,
the direction of the machine movement actually matters. We assume that the railroad segment
mi corresponding to job i has two ends E1

i and E2
i . Let Dm = {dm

1 ,d
m
2 ,d

m
3 ,d

m
4 } be the set

of directions a vehicle could move along between any two consecutive jobs i and j, where
dm

1 = E2
i → E1

j ,d
m
2 = E2

i → E2
j ,d

m
3 = E1

i → E1
j ,d

m
4 = E1

i → E2
j . We define decision variable

xk,d
i, j to denote whether vehicle k moves from job i to j in direction d ∈D , and let T k,d

i, j denote the
corresponding travel time. For simplicity of modeling, we assume a single virtual vehicle depot
{0} for all vehicles, with zero travel distance to any point in the railroad network. Similarly,
we define xk,d1

0,i and xk,d2
i,0 to indicate whether vehicle k reaches job i from and leaves job i to the

depot in directions d1 and d2, respectively. Here the direction set for moving from the depot to
the first job is D f = {d f

1 ,d
f
2} with d f

1 = 0→ E1
i ,d

f
2 = 0→ E2

i , and the direction set for arriving
at the depot from the last job is Dl = {dl

1,d
l
2} with dl

1 = E2
i → 0,dl

2 = E1
i → 0. Given that the

vehicles require fuel and drivers to function, the travel cost is considered in this scheduling
problem as well, which is assumed to be proportional to the travel time, with penalty weight as
Wtravel per time unit.

1The railroad company determines the division of its network into segments, and the frequencies at which these
segments should be maintained. These decisions are given as inputs to the proposed model.

Page 11

Moreover, each job i requires Sk
i time for vehicle k to finish, and has a preferred maintaining time

depending on the last time the segment was maintained and Γm. Either being early or late per
time unit from the preferred time incurs a penalty of WtimePi, where Wtime is the corresponding
penalty weight per unit time. For each segment m, its last maintenance activity is at time W 0

m,
thus the preferred time for its first expected maintenance activity is W 0

m +Γm. We denote wk
i as

the start time for vehicle k to perform job i, and ui and vi as the number of time units that job i
is late and early, respectively. Let Ccost item denote the costs for some other items (those related
to side constraints, which will be introduced in next section). The core VRPTW model can be
formulated as follows:

(RMRSP)

min ∑
i∈I

(
WjobαjobLi(1− zi) +WtimeαtimePi(ui + vi)

+Wtravelαtravel ∑
j∈I

∑
d∈Dm

∑
k∈K

T k,d
i, j xk,d

i, j

)
+ ∑

other cost items
Ccost item (2.1a)

s.t. ∑
k∈K

zk
i = zi, ∀i ∈I , (2.1b)

∑
j∈I

∑
d∈Dm

xk,d
i, j + ∑

d∈Dl

xk,d
i,0 = zk

i , ∀i ∈I ,k ∈K , (2.1c)

zi ≤ z j, ∀i, j ∈Im,ni > n j,m ∈M , (2.1d)

∑
j∈I

∑
d∈{dm

1 ,d
m
2 }

xk,d
i, j + xk,dl

1
i,0 = ∑

j∈I
∑

d∈{dm
1 ,d

m
3 }

xk,d
j,i + xk,d f

1
0,i , ∀i ∈I ,k ∈K , (2.1e)

∑
j∈I

∑
d∈{dm

3 ,d
m
4 }

xk,d
i, j + xk,dl

2
i,0 = ∑

j∈I
∑

d∈{dm
2 ,d

m
4 }

xk,d
j,i + xk,d f

2
0,i , ∀i ∈I ,k ∈K , (2.1f)

∑
j∈I

∑
d∈D f

xk,d
0, j = ∑

i∈I
∑

d∈Dl

xk,d
i,0 = 1, ∀k ∈K , (2.1g)

∑
d∈D

xk,d
i, j ≤ 1, ∑

d∈D f

xk,d
0, j ≤ 1, ∑

d∈Dl

xk,d
i,0 ≤ 1, ∀i ∈I , j ∈I ,k ∈K , (2.1h)

wk
i + sk

i +T k,d
i, j ≤ wk

j +Ak,d
i, j

(
1− xk,d

i, j

)
, ∀i ∈I , j ∈I ,d ∈Dm,k ∈K , (2.1i)

sk
i = (1+ γPiui)Sk

i , ∀i ∈I ,k ∈K , (2.1j)

wk
i −W 0

mi
−Γmi ≤ ui +Bk

i (1− zk
i), ∀i ∈I ,ni = 1,k ∈K , (2.1k)

wk
i −W 0

mi
−Γmi ≥−vi−Bk

i (1− zk
i), ∀i ∈I ,ni = 1,k ∈K , (2.1l)

wk
i −wk′

i′ −Γmi ≤ ui +Bk
i (1− zk

i)+Bk′
i′ (1− zk′

i′),

∀k,k′ ∈K , i ∈I ,ni > 1, i′ = (mi,ni−1) , (2.1m)

wk
i −wk′

i′ −Γmi ≥−vi−Bk
i (1− zk

i)−Bk′
i′ (1− zk′

i′),

∀k,k′ ∈K , i ∈I ,ni > 1, i′ = (mi,ni−1) , (2.1n)

xk,d1
i, j ,xk,d2

i,0 ,xk,d3
0, j ,zi,zk

i ∈ {0,1},wk
i ,ui,vi ≥ 0,

∀i, j ∈I ,k ∈K ,d1 ∈Dm,d2 ∈Dl,d3 ∈D f , (2.1o)

Page 12

Ak,d
i, j ,B

k
i ,∀i ∈I , j ∈I ,d ∈Dm,k ∈K . (2.1p)

The objective function (2.1a) minimizes the weighted summation of various costs/penalties,
which consist of four components: (i) the penalty for not performing jobs at all; (ii) the cost
for traveling; (iii) the penalty for not performing jobs at their preferred times; and (iv) other
cost items due to various side constraints. Constraints (2.1b) and (2.1c) ensure that if job i is
performed, it should be visited by exactly one vehicle in one direction d. Constraints (2.1d)
enforce that later jobs of one segment should occur after corresponding former jobs. Constraints
(2.1e) - (2.1g) enforce flow conservation for regular jobs and the virtual depot. Constraints
(2.1h) enforce that each job is only possible to be performed in one direction by one vehicle.
Constraints (2.1i) establish relationships between the vehicle routes and the job performing
times, which are also capable of eliminating subtours possibility. Constraints (2.1j) define the
relationship between actual working time and regular working time for maintaining a particular
job, due to the variability of productivity. Constraints (2.1k) - (2.1n) compute the number of
time units that each job is performed early or late from its preferred time. Constraints (2.1o)
define binary and nonnegative variables while constraints (2.1p) indicate those big values used
in different constraints.

2.2. Side Constraints

In this section, we will introduce various types of important industrial considerations and
business requirements. We design a customized approach to formulate them into several sets of
side constraints in the following subsections.

2.2.1. Hard/Soft Time Windows Constraints

As we introduced before, each maintenance job i ∈I has a preferred performing time, and we
try not to be late or early to avoid penalty. For example, if a grinding job is performed too late,
a railroad segment may face the risk of breaking down and causing severe blockage, while if it
is conducted too early, the abrasive condition of the segment is still good and we are wasting
resources to grind the segment unnecessarily. Given that different jobs have different priorities,
the whole set of jobs can be classified into two sets Ihard and Isoft. For those maintenance
jobs in Ihard (we call them “hard” jobs), they are assigned high priorities and are forced to
be started within certain “hard” time windows. For other maintenance jobs in Isoft (we call
them “soft” jobs), they are assigned with relatively low priorities and are allowed to be started
outside the given preferred “soft” time windows at certain penalty cost. The hard and soft time
windows constraints can be formulated as follows:

CHStw(u′,v′) = ∑
i∈Isoft

W soft
timePi(u′i + v′i) (2.2a)

ui ≤Ui, ∀i ∈Ihard, (2.2b)
vi ≤Vi, ∀i ∈Ihard, (2.2c)
ui ≤Ui +u′i, ∀i ∈Isoft, (2.2d)

Page 13

vi ≤Vi + v′i, ∀i ∈Isoft, (2.2e)

where CHStw is the total penalty costs incurred by those jobs in Isoft if they are performed
outside their soft time windows. Ui and Vi are the maximum time units that job i could be late
and early if it is a “hard” job, and u′i and v′i are the time units that “soft” job i is actually late and
early beyond its preferred time windows, respectively. Constraints (2.2b)-(2.2c) ensure that the
“hard” jobs can only be performed within their hard time windows, while (2.2d)-(2.2e) define
how long the “soft” jobs are performed outside their soft time windows.

2.2.2. Preference Time Windows Constraints

Preference time windows constraints would push a job to be performed inside certain preferred
time windows. These constraints differ from the hard/soft time windows constraints in that
jobs are allowed to be partially performed within the preferred time windows and introduce
proportional benefits. Such constraints should be incorporated, for example, if a ballast cleaning
job is worked inside its curfew periods when maintenance vehicles can work with higher
efficiencies. Define the set of preference time windows as P , and the start and end time of the
time window p ∈P are Pstart

p and Pend
p , respectively. We further define the set of jobs that have

preference time window p ∈P as Ip. The time preference constraints can be written out as
follows:

CPref(r) =− ∑
i∈Ip

∑
k∈K

∑
p∈P

Ci,k
Preft

k
ip (2.3a)

wk
i + sk

i − tk
ip ≥ Pstart

p −Ak
ip

(
2− zk

i −qk
ip

)
, ∀i ∈Ip,k ∈K , p ∈P, (2.3b)

wk
i + tk

ip ≤ Pend
p +Ak

ip

(
2− zk

i −qk
ip

)
, ∀i ∈Ip,k ∈K , p ∈P, (2.3c)

sk
i ≥ Sk

i − (1−β) ∑
p∈P

tk
ip−Ak

i

(
1− zk

i

)
, ∀i ∈I ,k ∈K , (2.3d)

sk
i ≤ Sk

i − (1−β) ∑
p∈P

tk
ip +Ak

i

(
1− zk

i

)
, ∀i ∈I ,k ∈K , (2.3e)

qk
ip ∈ {0,1}, tk

ip ≥ 0,∀i ∈Ip,k ∈K , p ∈P, (2.3f)

where β is the percentage of increased efficiency if machines work within preferred time
windows (such as curfews), tk

ip ≥ 0 is the length of time that vehicle k ∈K works on job i ∈Ip

in preferred time window p ∈P . Furthermore, we define qk
ip ∈ {0,1},∀i ∈Ip,k ∈K , p ∈P ,

where qk
ip equals to 1 if vehicle k would work on job i for tk

ip length of time in time window

p ∈P . CPref(·) in (2.3a) is the total time preference constraints penalty cost, where Ci,k
Pref

is the cost factor associated with job i and vehicle k. Constraints (2.3b) and (2.3c) are the
time conservation constraints when vehicle can perform part of a job within its preferred time
windows. Constraints (2.3d) and (2.3e) are the formulas for the relationship between sk

i and tk
ip.

Page 14

2.2.3. Repulsive Time Windows Constraints

Repulsive time windows constraints are enforced when a maintenance job cannot be worked
during certain time windows. Weather condition might be the most common reason for
having repulsive time windows constraints in maintenance job scheduling. In addition, many
maintenance jobs require that the associated rail tracks must be in dry condition for maintenance.
Therefore, it is ideal that the vehicles are not working in an area during its rainy or snowy
seasons. For example, ballast cleaning jobs cannot be performed when the air temperature is
too low or when the rail tracks are covered by snow. Hence, some ballast cleaning jobs in the
northern areas should not be scheduled in winter. Define the set of repulsive time windows as
R, the start and end time of the time window r ∈R are Rstart

r and Rend
r , respectively. Given that

the set of jobs that should not be performed during r ∈R is denoted as Ir, we can write out
the repulsive time windows constraints as follows:

wk
i +Sk

i ≤ Rstart
r +Dk

ir

(
1− zk

i + pr
i

)
, ∀k ∈K ,r ∈R, i ∈Ir, (2.4a)

wk
i ≥ Rend

r −Dk
ir

(
2− zk

i − pr
i

)
, ∀k ∈K ,r ∈R, i ∈Ir, (2.4b)

pr
i ∈ {0,1},k ∈K ,r ∈R,∀i ∈Ir, (2.4c)

where pr
i ∈ {0,1} indicates whether job i ∈Ir is performed before or after the repulsive time

window r. Constraints (2.4a) ensure that if pr
i = 0 the job i ∈Ir is finished before the repulsive

time window, while constraints (2.4b) force job i to be started after the repulsive time window
if pr

i = 1.

2.2.4. Mutual Exclusion Constraints

Mutual exclusion constraints require that certain pairs of jobs not to be performed simultaneously
due to real-world preferences or restrictions. For example, those grinding jobs that are in the
same division of the railroad network or involve the same railroad employees/resources (e.g.,
roadmasters) cannot be performed at the same time. Basically, all the maintenance jobs can
be classified into multiple groups based on some particular criteria, i.e., I = ∪g∈G Ig, such
that any two jobs in the same group Ig shall not be performed simultaneously. The mutual
exclusion constraints can be formulated as follows:

wk1
i1 +Sk1

i1 ≤ wk2
i2 +Ck1,k2

i1,i2

(
3− yi1,i2− zk1

i1 − zk2
i2

)
, ∀i1 6= i2 ∈Ig,g ∈ G ,k1,k2 ∈K , (2.5a)

wk2
i2 +Sk2

i2 ≤ wk1
i1 +Ck1,k2

i1,i2

(
2+ yi1,i2− zk1

i1 − zk2
i2

)
, ∀i1 6= i2 ∈Ig,g ∈ G ,k1,k2 ∈K , (2.5b)

yi1,i2 ∈ {0,1}, ∀i1, i2 ∈I , (2.5c)

where yi1,i2 indicates whether job i1 is performed before job i2 or not. If yi1,i2 = zk1
i1 = zk2

i2 = 1,
i.e., jobs i1 and i2 belong to the same group and i1 is performed by vehicle k1 before i2 is
performed by vehicle k2, constraints (2.5a) is effective by forcing i1 to be finished before i2 is
started. When yi1,i2 = 0 and zk1

i1 = zk2
i2 = 1, constraints (2.5b) become effective and require that

job i2 is finished before i1 is started.

Page 15

2.2.5. Precedence Constraints

The precedence constraints state that certain jobs must be performed in a certain sequence.
For example, a rail grinding or ballast cleaning job should always be performed before a
corresponding tie job, so as to avoid the possible damage that grinding might bring to the new
tie.

Let Ghard and Gsoft be the sets of all pairs of jobs that should follow the hard and soft precedence
constraints, respectively. For any pair (i1, i2) ∈ Ghard, job i1 is required to be finished at least
Ti1,i2 before job i2 starts, while for any pair (i1, i2) ∈ Gsoft, job i1 is preferred to be finished at
least Ti1,i2 before job i2 starts, and violating this preference incurs penalty ci1,i2

Prec. The precedence
constraints can be formulated as follows:

CPrec(y) = ∑
(i1,i2)∈Gsoft

ci1,i2
Precyi1,i2 (2.6a)

∑
k1∈K

(
wk1

i1 +Sk1
i1 zk1

i1

)
+Ti1,i2 ≤ ∑

k2∈K
wk2

i2 +Ai1,i2 (2− zi1− zi2) ,∀(i1, i2) ∈ Ghard, (2.6b)

∑
k1∈K

(
wk1

i1 +Sk1
i1 zk1

i1

)
+Ti1,i2 ≤ ∑

k2∈K
wk2

i2

+Ai1,i2 (2+ yi1,i2− zi1− zi2) , ∀(i1, i2) ∈ Gsoft, (2.6c)
yi1,i2 ∈ {0,1}, ∀i1, i2 ∈I , (2.6d)

where CPrec is the total penalty associated with the precedence constraints, ci1,i2
Prec is the penalty

for pair (i1, i2) violating the soft precedence constraints, and yi1,i2 indicates whether job i1 is
finished before job i2 is started or not. (2.6b) and (2.6c) imply the hard and soft precedence
constraints, respectively.

2.2.6. Maintenance Constraints

Maintenance constraints require that for each vehicle k ∈K we reserve a certain period of
downtime for maintenance. During the maintenance period, the vehicles are clearing and must
be stored on track away from mainline. Typically, maintenance crews go on duty and take on
water, fuel, oil, and materials to maintain the working vehicles.

For simplicity of modeling, we construct a dummy job for each vehicle k to represent the
maintenance, with MTk being the length of the associated maintenance time length. We then
formulate the maintenance constraints as follows:

wk
i +MTk ·mk

i +Sk
i +T k,d

i, j ≤ wk
j +Ak,d

i, j

(
1− xk,d

i, j

)
, ∀i ∈I , j ∈I ,k ∈K ,d ∈D , (2.7a)

mk
i ≤ zk

i , ∀i ∈I ,k ∈K , (2.7b)

∑
i∈I

mk
i = 1, ∀k ∈K , (2.7c)

where mk
i indicates whether the maintenance period for vehicle k follows right after finishing

Page 16

job i in its schedule. (2.7a) redefine the relationship between the performing times of the two
jobs that are before and after the maintenance period. (2.7b) ensure that the maintenance period
for vehicle k comes after a job i only if job i is maintained by vehicle k. (2.7c) require that each
vehicle is scheduled for a maintenance exactly once during the scheduling horizon.

SECTION 3: SOLUTION ALGORITHM

RMRSP is a VRPTW involving routing and scheduling decisions and many complex side
constraints. Therefore, it is extremely difficult, if not impossible, to find an optimal solution for
large-scale industrial instances via current exact solvers. To effectively handle the complexity
and challenges associated with this type of problems, we propose a customized algorithm
framework based on a rolling horizon approach and a stepwise heuristic procedure, in which the
model formulation presented in Section 2 is adjusted and embedded as a module. The overall
rolling horizon algorithm framework is shown as Figure 3.1.

Figure 3.1: Rolling horizon algorithm framework and the embedded stepwise heuristic proce-
dure.

3.1. Rolling Horizon

Suppose that the entire scheduling horizon of RMRSP is [0,Û], considering the “periodicity”
requirement for maintaining railroad segments, it is very complicated to solve RMRSP for the
entire scheduling horizon at once because the preferred maintaining time Ti for many jobs are
unknown beforehand. For example, suppose the entire scheduling horizon is 6 months (i.e.,
Û = 6 in the unit of month) and a track segment needs maintenance activity every 4 months. If
this segment is scheduled at time t1 = 1 for the first maintenance activity, then it is expected to
be scheduled for another activity at t2 = 5 (otherwise a penalty will be incurred). If however,
the segment is scheduled at time t1 = 3 for the first maintenance activity, then there is no need
to schedule any other maintenance activity during the scheduling horizon. Therefore, to address
the periodicity requirements, we adopt a rolling horizon approach to decompose the problem
in the entire scheduling horizon into multiple smaller versions in shorter horizons. The basic
procedure of the approach is shown in Figure 3.1 and can be described as follows:

Page 17

Step 1: Initially, for each railroad track segment m ∈M , we generate a maintenance job im
with preferred maintaining time Tim = W 0

m +Γm. In this way, we construct a set of
maintenance jobs as I ′ = {im,∀m ∈M };

Step 2: Given the start of the current scheduling horizon U (initially set as 0 in the first step),
we generate the input horizon as [U ,Ûinput] with Ûinput = (n−1)∆Uoutput +∆Uinput and
the output horizon as [U ,Ûoutput] with Ûoutput = n∆Uoutput, where ∆Uinput is the length
of the horizon for considering input segments and ∆Uoutput is the length of the horizon
for obtaining scheduling outputs, i.e., we only consider the set of maintenance jobs
Iinput with preferred time Ti ∈ [U ,Ûinput],∀i ∈Iinput, and we only fix into the solution
the set of maintenance jobs Ioutput with performing time wk

i ∈ [U ,Ûoutput],∀i ∈Ioutput.
Typically ∆Uouput is smaller than ∆Uinput so as to allow some flexibility in the scheduling.
Figure 3.2 illustrates how the rolling horizon evolves and proceeds over time;

Step 3: We then solve the RMRSP model with respect to Iinput. It is worthy noting that
Constraints (2.1d), (2.1m)-(2.1n) are no longer required since |Im| = 1,∀m ∈M ,
which significantly reduces the model complexity. From the solution, we take and fix
the schedules for those jobs Ioutput that are started within [U ,Ûoutput];

Step 4: We calculate Uk as the finish time of the latest job that has already been performed by
vehicle k ∈K within [U ,Ûoutput], and update U = mink∈K {Uk}. If U reaches the end
of the scheduling horizon, i.e., U ≥ Û , we terminate; otherwise, we go back to Step 1.

Figure 3.2: Illustration of the rolling horizon algorithm.

3.2. Stepwise Heuristic Procedure

In Step 3 of the rolling horizon approach, we solve our VRPTW model with respect to the job
set Iinput. However, if the number of segments in the railroad network is large, Iinput could still
potentially involve many segments, and make the problem size difficult to be simply handled
by solvers. Therefore, we further decompose step 3 in the rolling horizon method into the
following 4 sub-steps. The proposed stepwise heuristic procedure is also illustrated in Figure
3.1.

Page 18

Step 3.1: MIP Original: we set thresholds L and P to define the set of “important” jobs as
Iimportant = {i ∈ Iinput : Li ≥ L or Pi ≥ P}, and the set of “unimportant” jobs as
Iunimportant = Iinput\Iimportant, where L and P denote the lower thresholds of the
track length and the priority value for a segment to be important, respectively. In
this way, the total track length of segments that are considered only slightly reduces
while the number of segments incorporated can be decreased significantly, leading
to a much simpler model.2 We then solve our MIP formulation with respect to set
Iimportant to obtain an initial solution, and denote the set of jobs (in the order of
performing time) that are scheduled for vehicle k ∈K in the solution as I k

scheduled,
and Ischeduled = ∪k∈K I k

scheduled;

Step 3.2: MIP TimeGap: in the initial solution obtained in Step 3.1, if there exist large time gaps
(e.g., larger than a certain number of days), say we observe a time gap [Ugap,Ûgap],
we run our MIP model with respect to those jobs in Iinput\Ischeduled with preferred
performing times falling in [Ugap−∆Ugap,Ûgap +∆Ugap] to fill the gap. Here ∆Ugap
is set to include more jobs with preferred performing times outside but close to the
time gap [Ugap,Ûgap]. We finally combine the solutions for all the time gaps with the
Step 3.1 initial solution and update I k

scheduled,∀k ∈K and Ischeduled;

Step 3.3: Insertion: in the solution obtained in Step 3.2, for any remaining time gap between
a pair of consecutive jobs, we try to insert those jobs in Iinput\Ischeduled using an
insertion heuristic and update Ischeduled. The heuristic will be described in details in
Section 3.3;

Step 3.4: Local search: we use a local search heuristic algorithm to improve the solution
Ischeduled obtained in Step 3.3. This step will be described in more details in Section
3.4. Finally, we move all scheduled jobs in Ischeduled forward in terms of performing
time to further close any existing time gap. This may leave a small time gap in the
end of the scheduling horizon, but can be easily handled in Step 3.4 by carefully
updating U .

3.3. Insertion Heuristic

Step 3.3 in the stepwise heuristic procedure adopts an insertion heuristic to insert remaining
jobs one by one into the scheduling solution obtained in step 3.2. Each insertion action includes
two decisions: (i) the job to be selected for insertion, and (ii) the position in the solution to
insert the selected job. Given the step 3.2 solution {I k

scheduled}k∈K and Ischeduled, for each
remaining job ir ∈ Iinput\Ischeduled, if we insert it right after is ∈ I

kis
scheduled in the schedule

of vehicle kis with direction dis,ir , by denoting the jobs right before and after i ∈Ischeduled as

2How the number of segments can be reduced highly depends on the actual application context and the parameter
settings (e.g., values of L and P). For example, in the grinding application in Section 4.3, the total number of
segments is 393, while the total number of important segments is only 98 when L = 20 and P= 25, respectively.

Page 19

i.prev and i.next, respectively, we compute the corresponding benefit of this insertion as

C(is, ir) =WjobLir −Wtravel

(
T kis ,dis,ir

is,ir +T kis ,dir ,is.next
ir,is.next −T kis ,dis,is.next

is,is.next

)
−WtimePir(uir + vir)

− ∑
i∈I

kis
scheduled

WtimePi (∆ui +∆vi)− ∑
other cost items

Ccost item (3.1)

where C(is, ir) is the composition of the benefit of maintaining ir, the penalty of increased
traveling introduced by inserting ir, the penalty for ir to miss the preferred maintaining time,
the penalty for changing schedules of jobs following is in I

kis
scheduled, and other cost items. Note

that to insert ir, we may need to postpone some subsequent job i ∈I
kis

scheduled, which potentially
changes the value of ui or vi by ∆ui or ∆vi, respectively, and introduces additional penalty or
infeasibility issue. Specifically, we have

wkis
ir = wkis

is +Skis
is +T kis ,dis,ir

is,ir , (3.2a)

uir = max{0,wkis
ir −Tir}, (3.2b)

vir = max{0,Tir −wkis
ir }, (3.2c)

wkis
i = max{wkis

i ,wkis
i.prev +Skis

i.prev +T kis ,di.prev,i
i.prev,i }, ∀i ∈I

kis
scheduled, (3.2d)

∆ui = max{0,
(

wkis
i −Ti

)
−ui}, ∀i ∈I

kis
scheduled, (3.2e)

∆vi = max{0,
(

Ti−wkis
i

)
− vi}, ∀i ∈I

kis
scheduled, (3.2f)

where (3.2a)-(3.2c) define the maintaining time of job ir, the number of time units that ir is
late and early, respectively. (3.2d) update the maintaining time for any job i in the schedule of
vehicle kis after insertion, and (3.2e) and (3.2f) compute the changes in time that job i is late
and early, respectively. We need to verify the feasibility of this insertion by checking whether
any related side constraint is violated with these new variable values.

Based on the insertion benefit calculations, the insertion heuristic can be described as follows:

Step 3.3.1. Calculate the insertion benefit C(is, ir) of any pair of jobs (is, ir), is ∈Ischeduled, ir ∈
Iinput\Ischeduled;

Step 3.3.2. Find the pair of jobs (i∗s , i
∗
r) that is insertion-feasible and has the maximum value of

C(is, ir), i.e.,
(i∗s , i

∗
r) = argmax is∈Ischeduled,

ir∈Iinput\Ischeduled

{C(is, ir)}

Step 3.3.3. If C(i∗s , i
∗
r)≤ 0 or Ischeduled = Iinput, we have inserted all jobs that could benefit

us and hence terminate; otherwise we go Step 3.3.4.

Step 3.3.4. If C(i∗s , i
∗
r) is positive, we insert i∗r right after i∗s into the schedule of the cor-

responding vehicle ki∗s , update I
ki∗s

scheduled and Ischeduled, and update i∗r .prev =

Page 20

i∗s , i
∗
s .next.prev = i∗r , i

∗
r .next = i∗s .next, i∗s .next = i∗r . Then for any job i after i∗r in

the schedule of ki∗s , we update its maintaining time (after we update those jobs
scheduled before it) as

w
ki∗s
i = max{w

ki∗s
i ,w

ki∗s
i.prev +S

ki∗s
i.prev +T

ki∗s ,di.prev,i

i.prev,i }

Then we go back to Step 3.3.1 and repeat the process.

3.4. Local Search Heuristic

By implementing the insertion heuristic, we have the scheduling solution {I k
scheduled}k∈K

occupying almost the entire scheduling horizon for each vehicle. We further use a local search
algorithm to improve the solution. Specifically, given a scheduling solution {I k

scheduled}k∈K ,
we search and check the solutions in its neighborhood to find any potential for improvement.
The neighborhood of a solution is defined by considering the following types of moves:

(1) One vehicle swap: we swap the orders of two jobs i1, i2 in the schedule of one vehicle k, as
that shown in Step 3.4 in Fig 3.1.

(2) Two vehicles swap: we swap the positions of two jobs i1 and i2 that are in the schedules of
two different vehicles k1 and k2, respectively.

(3) Two vehicles interchange: we remove one job i from the schedule of one vehicle k1 and
insert the job i into the schedule of another vehicle k2.

In each local search step, we enumerate all the possible feasible neighbors of the current
solution, calculate the benefit of the move to each neighbor, and find the one with the best
benefit. Note that when constructing neighbor solutions, all the side constraints need to be taken
into considerations to check solution feasibility. If the best neighbor solution leads to a lower
system cost than the current one, we accept the move and update the current solution with the
neighbor solution.

In order to improve the efficiency of the local search procedure, a few more approaches are
developed as follows for further enhancement:

(1) We apply hierarchical neighborhood search. Specifically, we first calculate the benefits
associated with only the jobs that are swapped or interchanged, and select a small set of
moves with the largest benefits. We then add back the benefits associated with those jobs
that are indirectly affected by the selected set of moves and find the best one.

(2) We implement “block” swap/interchange, where a block is defined as a sequence of consec-
utive jobs in the solution. These block operations introduce additional neighborhood search
opportunities and could possibly bring improvement when two blocks both correspond to
smooth routes and are not performed at their preferred times. Compared with the simple
job swap/interchange, the block operations are typically much faster;

Page 21

(3) We trace the benefits and avoid unnecessary recalculations. For example, if a “one vehicle
swap” operation is taken, the schedule of jobs that are performed by other vehicles remain
unchanged and their associated benefits that have been calculated before do not need to be
revisited in the following step.

SECTION 4: NUMERICAL STUDIES

In this section, we test the performance of the proposed models and algorithms through a series
of numerical experiments, as well as two real-world RMRSP instances in one of the largest
railroads in North America. All tests are implemented in the Microsoft Visual C# environment
and run on a personal computer with 3.4GHz CPU and 8GB RAM.

4.1. Performance Tests

To test the performance of the proposed model and algorithm, we solve a series of numerical
instances extracted from the full-scale dataset provided by the company. Both the proposed
solution approach and Gurobi solver are used and the results obtained by the two methods are
compared.

To make the test cases being solvable by using Gurobi, we simplify the problem by only
considering the core model Eqs. (2.1a)-(2.1p), and selecting up to 120 segments and 4 vehicles
from the database. Specifically, we test four sets of cases: (i) 20 segments with frequency
3 times/year, 2-4 vehicles; (ii) 40 segments with frequency 3 times/year, 2-4 vehicles; (iii)
40 segments with frequency 3 times/year and 40 segments with frequency 2 times/year, 2-4
vehicles; and (iv) 40 segments with frequency 3 times/year, 40 segments with frequency 2
times/year, and 40 segments with frequency 1 time/year, 2-4 vehicles. Since the maximum
frequency of maintaining a segment in any case is 3, we solve three MIP Original with the
rolling horizon approach. The basic parameters for the rolling horizon are set as Û = 12,
∆Uinput = 6 and ∆Uoutput = 4. The time limit of using Gurobi to solve each MIP Original and
MIP TimeGap is set accordingly to ensure that the total solution time is no larger than 30min,
while the time of using Gurobi to solve the original formulation is set to 2h. For the Insertion
step, the thresholds are set as L = 20 and P = 2.

The computational results are presented in Table 4.1. It can be observed that our proposed
algorithm always outperforms Gurobi in terms of both solution quality and computation time.
When the instance size is relatively large, i.e., the number of segments is larger than 40 or
the number of vehicles is larger than 2, it becomes significantly difficult for Gurobi to solve
the original model. For example, an instance with 3 vehicles and 80 segments has more than
220000 rows, 175000 columns and 173000 binary variables, and the difference between Gurobi
solution and our heuristic solution is almost 200%. Moreover, the quality of the Gurobi solution
looks quite random and fails to provide any insight.

Taking a closer look at the solution, we can observe that when the number of segments is small
such as 20, two vehicles are enough to finish almost all the jobs (the cost for missing jobs

Page 22

of # of # of Heuristic approach (0.5h) Gurobi Diff

segments jobs vehicles # of Cost components $ (2h) (%)

finished jobs Missing jobs Travel Earliness&Lateness Total

20 60
2 58 1923 6670 1558 10151 11630 14.6
3 60 0 3296 1864 5160 8183 58.6
4 60 0 2355 1717 4072 14494 255.9

40 120
2 92 19575 3332 5250 28156 29267 3.9
3 115 1066 4874 3830 9769 64199 557.2
4 115 867 2391 3934 7191 34265 476.5

80 200
2 132 44017 5733 5602 55351 85242 54.0
3 167 10825 6935 7470 25229 73523 191.4
4 177 3338 5704 5960 15002 107865 619.0

120 240
2 114 72911 4551 4851 82313 124369 51.1
3 178 31512 7114 5666 44293 155896 252.0
4 207 7809 9899 7476 25184 136386 541.6

Table 4.1: Algorithm performance for the hypothetical numerical instances.

is very small). When the number of segments increases, more vehicles are required to avoid
the high penalty of not being able to finish some jobs. For example, when 40 segments are
considered, 2 vehicles are only able to finish 92 jobs, while 3 or 4 vehicles can finish up to
115 out of 120 (5 jobs are missing because of the high penalty for other components if they
are scheduled). Furthermore, when the number of segments increases to 120, even 4 vehicles
are not enough, and the cost for missing jobs (also the total cost) increases significantly as the
number of vehicles reduces from 4 to 2.

We further test the effect of the insertion and local search heuristic by investigating the objective
value improvements obtained by running these two procedures. The detailed costs with and
without running the insertion and local search heuristic for the hypothetical cases (with 80 and
120 segments) are summarized in Table 4.2 below. We do not show the cases with 20 and 40
segments because these cases involve mostly important segments and there is very little room
for improvement. From the comparison, we see that the insertion heuristic brings a large benefit
to the solution by adding more jobs (although less important ones) into the schedule, and as a
result, shortening the time gaps between adjacent scheduled jobs and reduces the total system
costs. In addition, as compared with the heavy computational burden needed for solving the
MIP models in Steps 3.1 and 3.2 (i.e., ≈ 2 h), the execution times of the insertion and local
search procedures (i.e., < 1 min) can actually be considered negligible.

4.2. Sensitivity Analysis

To show the applicability of our formulation and algorithms, and to draw managerial insights,
we further conduct sensitivity analysis on some system parameters with the case involving 80
segments, 200 jobs, and 3 vehicles. Different weights of the various cost components in the
objective function, and different values of ∆Ûinput and ∆Ûoutput. The results are summarized in
the following Table 4.3 and Table 4.4, respectively.

From Table 4.3, we can observe that as we change the relative weights of different cost com-

Page 23

of # of # of With or without # of Cost components $

segments jobs vehicles insertion & local search finished jobs Missing jobs Travel Earliness&Lateness Total

80 120

2 without 94 48978 5800 4185 58962
with 132 44017 5733 5602 55351

3 without 133 15275 6999 6246 28520
with 167 10825 6935 7470 25229

4 without 143 7779 5790 4825 18394
with 177 3338 5704 5960 15002

120 200

2 without 85 77018 4438 3532 84988
with 114 72991 4551 4851 82313

3 without 131 36259 7170 4445 47894
with 178 31512 7114 5666 44293

4 without 156 14073 10207 5737 30018
with 207 7809 9899 7476 25814

Table 4.2: Comparison of results with and without the insertion and local search heuristic.

ponents, the values of these cost components in the solution change as expected. Specifically,
when we increase the weight of one component, the cost of that component will decrease to
avoid the associated high penalty. We want to emphasize here that the total costs under different
ratios of weights are not supposed to be compared with each other as it highly depends on how
different cost components can be transformed into monetary values following certain rules,
which is not the focus of our research.

Wjob : Wtime : Wtravel
Cost components $

Missing jobs Travel Earliness&Lateness Total

1:1:1 8255 8005 6234 22494
4:1:1 4949 13307 6864 25120
1:4:1 23254 3448 6738 33440
1:1:4 18952 8152 4309 31414

Table 4.3: Results for different weights of cost components in the objectives.

Table 4.4 presents the results under different values of ∆Ûinput and ∆Ûoutput. When we increase
the value of ∆Ûinput (from 6 to 9), the total cost reduces because we consider more job options
and enlarge the feasible solution space. When we reduce the value of Ûoutput (from 4 to 3), the
total system cost increases. This is because with smaller value of Ûoutput, more model runs are
needed, and thus it is more likely that some of the model runs have insufficient jobs to schedule
and leave time gaps. This contributes to a smaller job completion ratio and a worse occupancy
of the whole planning horizon.

4.3. Real-world Applications

We test the performance of the proposed model and solution algorithm for two real-world
RMRSP instances in a Class I railroad network in North America (with more than 20,000 miles
of track length): one is scheduling rail grinders for grinding rail segments, and the other one is

Page 24

∆Ûinput ∆Ûoutput Cost components $

(month) (month) Missing jobs Travel Earliness&Lateness Total

6 4 8255 8005 6234 22494
6 3 13476 8022 7056 28554
9 4 8143 7831 5297 21271
9 3 10938 5572 6512 23023

Table 4.4: Results for different choices of input and output horizon length.

scheduling ballast cleaners for a given set of jobs requests. Both instances are used by the Class
I railroad company in its real-world operations.

In the grinder scheduling instance, we plan the yearly grinding schedule for 393 rail track
segments with two grinders. Note that each segment may need multiple jobs to be performed
during the one year period; see Figure 4.1 for the frequency distribution of segments. The
constraints considered for the grinder scheduling include (i) hard/soft time windows constraints,
(ii) mutual exclusion constraints, (iii) precedence constraints; and (iv) maintenance constraints.
Considering the large size of the network and the complicated nature of routing problems,
we partition the original problem into multiple smaller pieces, as we discussed in Section 3.1.
Specifically, we set ∆Uinput to be 6 months and ∆Uoutput to be 4 months. This means that the
solution algorithm will run Step 1 to 4 for three times to plan the schedules for the whole year.
In addition, the time limit and acceptable gap for each MIP Original step are set as 1h and 5%,
respectively. While for each MIP TimeGap step, they are set as 10min and 1%, respectively.
Given the problem settings, the total solution time of the proposed algorithm solving one
real-world instance is always less than 4h, which is acceptable in practice since the schedule is
updated every one month. The solution obtained by applying the algorithm is compared with
the manual solution provided by experts from the company. To protect data confidentiality, we
only report some summaries of the solutions but not the exact numbers or statistics.

There are several key performance metrics to evaluate the grinder scheduling solutions: (i) the
total track miles that are finished within the planning horizon (Figure 4.2a); (ii) the total travel
time that the grinders spend on moving from segment to another (Figure 4.2b); (iii) the job
completion ratio and the number of missed grinding jobs (Figure 4.2c); and (iv) the number
of jobs that are grinded too early or too late (beyond the soft time window), (Figure 4.2d).
Compareing our model solution to the manual solution, we have the following observations:

(1) Our approach achieves a 21% improvement in total track miles being maintained.

(2) Our approach yields a significant 41% reduction in total travel time.

(3) Only 74 out of total 785 grinding jobs are missed in our model solution.

(4) Only 9 out of 711 grinding jobs that have been performed are grinded too early.

(5) Only 4 out of 711 grinding jobs that have been performed are grinded too late.

Page 25

Figure 4.1: Frequency distribution.

The second application context of our model is yearly scheduling of the ballast cleaners over the
large-scale railroad network. There are 449 job requests being submitted, with the total track
length of nearly 5500 miles.3 The constraints are similar to those of the grinding scheduling,
except that (i) the preference time windows constraints are added considering the curfew periods,
where the percentage of increased efficiency β equals to 60%; (ii) the repulsive time windows
are enforced due to weather requirements; and (iii) some other factors, such as whether a
segment is constructed as concrete ties, or whether it can be worked inside a curfew, would
determine the importance of segments, and in turn, influence the overall scheduling plan. Since
there are usually a large number of job requests being submitted, some segments cannot be all
scheduled within one year planning horizon even if the ballast cleaners work without stopping.
Thus, it is critical to identify the most important segments (e.g., the ones with concrete ties
or needs tie replacement, etc.) and come up with a schedule with reasonably short travel
distances. The solution generated from the proposed model is able to cover nearly 50.6% of
total track miles of the job requests, which is 77% longer than the manual solution (as shown in
Figure 4.3a). Almost all segments with concrete ties (i.e., 99.9%) and nearly 45.6% of tracks
that are going to have tie replacement are scheduled. Meanwhile, as shown in Figure 4.3b,
the total traveling times are less than 8% of total working days. Considering the fact that the
job requests are not necessarily adjacent to each other over the network, such productivity is
very satisfactory in real practice. Moreover, by incorporating the weather conditions into the
model, the newly generated schedule would encourage the ballast cleaners to go toward south
during winter and work at dry areas in the summer. In this way, the layoff of cleaners due to
bad weather conditions can be significantly reduced by following the schedule, such that the
utilization of the ballast cleaners can be improved.

3To protect data confidentiality, this mileage number is calculated by multiplying the real data with a constant
value.

Page 26

(a) Total track miles maintained (b) Total travel time

(c) Job completion ratio (d) Timeliness of schedule

Figure 4.2: Results of real-world grinder scheduling.

(a) Total track miles maintained (b) Productivity of vehicles

Figure 4.3: Results of real-world ballast cleaner scheduling.

Page 27

SECTION 5: CONCLUSION

This research develops a VRPTW-based MIP model to formulate the core component of
RMRSP under variable productivities, with many complex side constraints being used to
capture various business requirements. A customized stepwise algorithm procedure involving
an MIP optimization model, an insertion heuristic, and a local search module, is designed
and embedded in a rolling horizon approach framework to effectively solve the problem. The
results of a series of numerical instances show that the proposed approach is able to yield
much better solutions as compared to the existing commercial solver. For example, for the
test instance with 200 jobs and 4 vehicles in Table 1, the cost provided by directly solving the
original model using Gurobi MIP solver is more than 6 times larger than the one provided by
our algorithm. Moreover, two empirical case studies show that the schedule produced by the
proposed approach leads to a higher utilization of the maintenance vehicles compared with
current manual solutions, e.g., the improvement in track miles being maintained is 21% for
grinders and 77% for ballast cleaners. This saving is very attractive to the railroad company
since most of the maintenance vehicles involve large costs. The proposed model and solution
method have been adopted by a Class I railroad company to provide insights and instructions
for their railroad maintenance scheduling and routing applications.

This work can be potentially extended in several directions. We are interested in studying the
problem in a dynamic setting, where the routes and schedules can be modified according to
the changing environments. This would become particularly important if real-time data and
more accurate predictions can be obtained by applying more advanced sensing technologies to
detecting the deterioration status of the tracks or ballasts. In addition, it would be interesting
to investigate how the cyclic scheduling of rail maintenance machines can be achieved, where
the segments that need to be routinely maintained can be visited repeatedly based on certain
frequencies. Given the frequencies might be significantly different from each other, it is easy
to imagine that the problem scale would become much larger and more powerful solution
approaches such as metaheuristic algorithms need to be developed.

APPENDIX: NOTATION LIST

M Set of segments;
Nm Set of all expected maintenance activities of segment m ∈M ;
I Set of all maintenance jobs that need to be performed in the planning horizon;
Im Set of jobs associated with segment m ∈M ;
{0} Virtual depot;
K Set of maintenance vehicles;
Dm Set of directions a vehicle could move along between any two consecutive jobs i

and j, Dm = {dm
1 ,d

m
2 ,d

m
3 ,d

m
4 }, where dm

1 = E2
i → E1

j ,d
m
2 = E2

i → E2
j ,d

m
3 = E1

i →
E1

j ,d
m
4 = E1

i → E2
j ;

Page 28

D f Set of directions for moving from the depot to the first job, with D f = {d f
1 ,d

f
2},

where d f
1 = 0→ E1

i ,d
f
2 = 0→ E2

i ;
Dl Set of directions for arriving at the depot from the last job, with Dl = {dl

1,d
l
2},

where dl
1 = E2

i → 0,dl
2 = E1

i → 0;
Ihard Set of “hard” jobs that are assigned high priorities and are forced to be started within

certain “hard” time windows;
Isoft Set of“soft” jobs that are assigned with relatively low priorities and are allowed to

be started outside the given preferred “soft” time windows at certain penalty cost;
P Set of preference time windows;
Ip Set of jobs that have preference time window p ∈P;
R Set of repulsive time windows;
Ir Set of jobs that should not be performed during repulsive time window r ∈R;
Ghard,Gsoft Sets of all pairs of jobs that should follow the hard and soft precedence constraints,

respectively.
Iinput Set of maintenance jobs with preferred time Ti ∈ [U ,Ûinput];
Ioutput Set of jobs that are started within [U ,Ûoutput];
Iimportant Set of “important” jobs, where Iimportant = {i ∈Iinput : Li ≥ L or Pi ≥ P};
Iunimportant Set of “unimportant” jobs as Iunimportant = Iinput\Iimportant;
I k

scheduled Set of jobs (in the order of performing time) that are scheduled for vehicle k ∈K
in the solution;

Fm Desired maintenance frequency of segment m ∈M ;
Γm Desired maintenance headway of segment m ∈M ;
Nm Number of times that segment m ∈M is likely to be maintained within the entire

planning horizon;
Li Track length associated with maintenance job i ∈I ;
Pi Priority value associated with maintenance job i ∈I ;
Wjob Penalty per mile for not performing a job;
Wtravel Penalty per time unit for traveling;
Wtime Penalty per unit time for being late or early from the preferred time;
αjob Cost factor of the penalty for not performing a job;
αtravel Cost factor of the penalty for traveling;
αtime Cost factor of the penalty for being late or early;
E1

i ,E
2
i The two ends of segment mi corresponding to job i ∈I ;

T k,d
i, j Travel time for vehicle k ∈K moving from job i to j in direction d ∈D ;

Sk
i Regular working time needed to finish job i ∈I by vehicle k ∈K ;

γ Deterioration rate of tracks;
W 0

m Maintenance time of last maintenance activity for segment m ∈K ;
Ak,d

i, j ,B
k
i Big values associated with different constraints;

Ui,Vi Maximum time units that job i ∈Ihard could be late and early if it is a “hard” job,
respectively;

Pstart
p ,Pend

p Start and end time of the preference time window p ∈P , respectively;
Rstart

r ,Rend
r Start and end time of repulsive time window r ∈R, respectively;

β Percentage of increased efficiency if vehicles work within preferred time windows;

Page 29

tk
ip Length of time that vehicle k ∈K works on job i ∈Ip in preferred time window

p ∈P;
Ccost item Costs related to side constraints;
CHStw Total penalty costs incurred by jobs in Isoft if they are performed outside their soft

time windows;
Ci,k

Pref Total time preference constraints penalty cost factor associated with job i ∈Ip and
vehicle k ∈K ;

CPrec Total penalty associated with the precedence constraints;
ci1,i2

Prec Penalty for job pair (i1, i2) violating the soft precedence constraints;
MTk Length of the maintenance time length for vehicle k ∈K ;
Ti Preferred maintenance time for job i ∈I ;
Û Length of the entire scheduling horizon;
U Start time of the current scheduling horizon, initially set as 0;
[U ,Ûinput] Input horizon in the solution algorithm;
[U ,Ûoutput] Output horizon in the solution algorithm;
∆Uinput Length of the horizon for considering input segments;
∆Uoutput Length of the horizon for obtaining scheduling outputs;
L,P Lower thresholds of the track length and the priority value for a segment to be

important, respectively;
Ugap Start time of a time gap in the schedule;
[Ugap,Ûgap] Time gap in the schedule;
C(is, ir) Composition of the benefit of maintaining ir, the penalty of increased traveling

introduced by inserting ir, the penalty for ir to miss the preferred maintaining time,
the penalty for changing schedules of jobs following is in I

kis
scheduled, and other cost

items;
zi Binary decision variable indicating whether job i ∈I is performed or not;
zk

i Binary decision variable indicating whether job i ∈ I is performed by vehicle
k ∈K or not;

xk,d
i, j Routing decision variable, indicating whether vehicle k ∈K move from job i to j in

direction d ∈D ;
xk,d1

0,i ,xk,d2
i,0 Binary decision variables indicating whether vehicle k reaches job i from the depot

in direction d1 and leaves job i to the depot in direction d2, respectively;
sk

i Actual working duration of job i ∈I by vehicle k ∈K ;
wk

i Start time for vehicle k to perform job i ∈I ;
ui,vi Number of time units that job i ∈I is late and early, respectively;
u′i,v

′
i Time units that “soft” job i ∈Isoft is actually late and early beyond its preferred

time windows, respectively;
qk

ip Binary decision variable indicating whether vehicle k ∈K would work on job
i ∈Ip for tk

ip length of time in time window p ∈P;
pr

i Binary decision variable indicating whether job i ∈Ir is performed before or after
the repulsive time window r ∈R;

yi1,i2 Binary decision variable indicating whether job i1 ∈ I is performed before job
i2 ∈I or not;

Page 30

mk
i Binary decision variable indicating whether the maintenance period for vehicle

k ∈K follows right after finishing job i ∈I in its schedule.

References

Bard, J. F., Kontoravdis, G., Yu, G., 2002. A Branch-and-Cut Procedure for the Vehicle Routing
Problem with Time Windows. Transportation Science 36 (2), 250–269.

Bräysy, O., Gendreau, M., 2005a. Vehicle routing problem with time windows, part I: Route
construction and local search algorithms. Transportation Science 39 (1), 104–118.

Bräysy, O., Gendreau, M., 2005b. Vehicle Routing Problem with Time Windows, Part II:
Metaheuristics. Transportation Science 39 (1), 119–139.

Campbell, A. M., Wilson, J. H., 2014. Forty years of periodic vehicle routing. Networks 63 (1),
2–15.

Castillo, E., Calviño, A., Grande, Z., Sánchez-Cambronero, S., Gallego, I., Rivas, A., Menéndez,
J. M., 2016a. A Markovian-Bayesian network for risk analysis of high speed and conventional
railway lines integrating human errors. Computer-Aided Civil and Infrastructure Engineering
31 (3), 193–218.

Castillo, E., Grande, Z., Calviño, A., 2016b. Bayesian networks-based probabilistic safety
analysis for railway lines. Computer-Aided Civil and Infrastructure Engineering 31 (9),
681–700.

Chao, I.-M., Golden, B. L., Wasil, E., 1995. An improved heuristic for the period vehicle
routing problem. Networks 26 (1), 25–44.

Christofides, N., Beasley, J. E., 1984. The period routing problem. Networks 14 (2), 237–256.

Cordeau, J.-F., Gendreau, M., Laporte, G., 1997. A tabu search heuristic for periodic and
multi-depot vehicle routing problems. Networks 30 (2), 105–119.

D’Ariano, A., Meng, L., Centulio, G., Corman, F., 2017. Integrated stochastic optimization ap-
proaches for tactical scheduling of trains and railway infrastructure maintenance. Computers
& Industrial Engineering.

Desaulniers, G., Madsen, O., Ropke, S., 2014. Chapter 5: The Vehicle Routing Problem
with Time Windows. In: Vehicle Routing. MOS-SIAM Series on Optimization. Society for
Industrial and Applied Mathematics, pp. 119–159.

Desrochers, M., Desrosiers, J., Solomon, M., 1992. A new optimization algorithm for the
vehicle routing problem with time windows. Operations Research 40 (2), 342–354.

Federal Railroad Administration Office of Safety Analysis, 2017. One year acci-
dent/incident overview by region/state/county. http://safetydata.fra.dot.gov/
officeofsafety, Accessed: 12/11/2017.

Page 31

http://safetydata.fra.dot.gov/officeofsafety
http://safetydata.fra.dot.gov/officeofsafety

Forsgren, M., Aronsson, M., Gestrelius, S., 2013. Maintaining tracks and traffic flow at the
same time. Journal of Rail Transport Planning & Management 3 (3), 111–123.

Francis, P., Smilowitz, K., Tzur, M., 2006. The period vehicle routing problem with service
choice. Transportation Science 40 (4), 439–454.

Francis, P. M., Smilowitz, K. R., Tzur, M., 2008. The period vehicle routing problem and its
extensions. In: The vehicle routing problem: latest advances and new challenges. Springer,
pp. 73–102.

Gaudioso, M., Paletta, G., 1992. A heuristic for the periodic vehicle routing problem. Trans-
portation Science 26 (2), 86–92.

Kallehauge, B., Boland, N., Madsen, O. B., 2007. Path inequalities for the vehicle routing
problem with time windows. Networks 49 (4), 273–293.

Kohl, N., Desrosiers, J., Madsen, O. B. G., Solomon, M. M., Soumis, F., 1999. 2-path cuts for
the vehicle routing problem with time windows. Transportation Science 33 (1), 101–116.

Lannez, S., Artigues, C., Damay, J., Gendreau, M., Aug. 2015. A railroad maintenance problem
solved with a cut and column generation matheuristic. Networks 66 (1), 40–56.

Lidén, T., 2015. Railway infrastructure maintenance - A survey of planning problems and
conducted research. Transportation Research Procedia 10, 574–583.

Lidén, T., Joborn, M., 2017. An optimization model for integrated planning of railway traffic and
network maintenance. Transportation Research Part C: Emerging Technologies 74, 327–347.

Luan, X., Miao, J., Meng, L., Corman, F., Lodewijks, G., 2017. Integrated optimization on train
scheduling and preventive maintenance time slots planning. Transportation Research Part C:
Emerging Technologies 80, 329–359.

Lysgaard, J., 2006. Reachability cuts for the vehicle routing problem with time windows.
European Journal of Operational Research 175 (1), 210–223.

Osman, M. H. B., Kaewunruen, S., Jack, A., Jul. 2017. Optimisation of schedules for the
inspection of railway tracks. Proceedings of the Institution of Mechanical Engineers, Part F:
Journal of Rail and Rapid Transit, 1–11.

Peng, F., Kang, S., Li, X., Ouyang, Y., Somani, K., Acharya, D., 2011. A heuristic approach to
the railroad track maintenance scheduling problem. Computer-Aided Civil and Infrastructure
Engineering 26 (2), 129–145.

Peng, F., Ouyang, Y., 2012. Track maintenance production team scheduling in railroad networks.
Transportation Research Part B: Methodological 46 (10), 1474–1488.

Peng, F., Ouyang, Y., Somani, K., 2013. Optimal routing and scheduling of periodic inspections
in large-scale railroad networks. Journal of Rail Transport Planning & Management 3 (4),
163–171.

Page 32

Savelsbergh, M. W. P., 1985. Local search in routing problems with time windows. Annals of
Operations Research 4 (1), 285–305.

Su, Z., Jamshidi, A., NÃžÃśez, A., Baldi, S., De Schutter, B., 2017. Multi-level condition-based
maintenance planning for railway infrastructures – A scenario-based chance-constrained
approach. Transportation Research Part C: Emerging Technologies 84, 92–123.

Toth, P., Vigo, D. (Eds.), 2014. Vehicle Routing. MOS-SIAM Series on Optimization. Society
for Industrial and Applied Mathematics.

Vansteenwegen, P., Dewilde, T., Burggraeve, S., Cattrysse, D., 2016. An iterative approach for
reducing the impact of infrastructure maintenance on the performance of railway systems.
European Journal of Operational Research 252 (1), 39–53.

Wang, J., Liu, X.-Z., Ni, Y.-Q., 2018. A Bayesian probabilistic approach for acoustic emission-
based rail condition assessment. Computer-Aided Civil and Infrastructure Engineering 33 (1),
21–34.

Xie, W., Ouyang, Y., Somani, K., 2016. Optimizing location and capacity for multiple types of
locomotive maintenance shops. Computer-Aided Civil and Infrastructure Engineering 31 (3),
163–175.

Page 33

	NURail_report_0416.pdf
	Introduction
	Model Formulation
	VRPTW-based Core Model
	Side Constraints
	Hard/Soft Time Windows Constraints
	Preference Time Windows Constraints
	Repulsive Time Windows Constraints
	Mutual Exclusion Constraints
	Precedence Constraints
	Maintenance Constraints

	Solution Algorithm
	Rolling Horizon
	Stepwise Heuristic Procedure
	Insertion Heuristic
	Local Search Heuristic

	Numerical Studies
	Performance Tests
	Sensitivity Analysis
	Real-world Applications

	Conclusion

